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Quantitative study of scars in the boundary section of the stadium billiard

Fernando P. Simonotti, Eduardo Vergini, and Marcos Saraceno
Departamento de Fı´sica, Comisio´n Nacional de Energı´a Atómica, Av. Libertador 8250, 1429 Buenos Aires, Argentina

~Received 11 April 1997; revised manuscript received 5 June 1997!

We construct a semiclassically invariant function on the boundary of the billiard, taken as the Poincare´
section in Birkhoff coordinates, based on periodic orbit information, as an ansatz for the normal derivative of
the eigenfunction. Defining an appropriate scalar product on the section, we can compute thescar intensityof
a given periodic orbit on an eigenstate, as the overlap between the constructed function and the normal
derivative on the section of the eigenstate. In this way, we are able to investigate how periodic orbits scar the
spectrum and how a given eigenstate decomposes intoscar functions. We use this scheme on the Bunimovich
stadium.@S1063-651X~97!11509-4#

PACS number~s!: 05.45.1b, 03.65.Sq, 03.40.Kf
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I. INTRODUCTION

Since the observation of imprints of periodic orbits
quantum eigenfunctions,scars, by McDonald and Kaufmann
@1#, a vast amount of work has been done toward the un
standing of this phenomenon. The numerical work and t
oretical analysis of Heller@2# has been of great importanc
Bogomolny@3# pushed the theory of scars further, his dev
opments relied on the smearing of the probability dens
over a small energy range. A similar approach, but in ph
space rather than in coordinate space, was used by Berry@4#.
A theory for individual eigenstates was developed by Ag
and Fishman@5#, who constructed a semiclassical Wign
function. The integration of this Wigner function in a narro
tube along a periodic orbit gave them the scar weight. S
lansky @6# used the scattering approach to define a funct
on the Poincare´ section, which was tested for scars. An im
portant tool in the following analysis, the stellar represen
tion, was developed by Tualle and Voros@7#.

In this paper, we construct a semiclassically invaria
function on the Poincare´ section, built on a given periodic
orbit, which we call thescar function, which can be extended
to the domain via the Green theorem~5!. We define thescar
intensity as the overlap between this scar function and
corresponding reduction of the eigenfunction on the sect
with a given measure, so as to mimic the overlap in
domain. Using this construction on the stadium billiard,
are able, by means of symbolic dynamics, to identify scar
single periodic orbits and of families of them in the quantu
spectrum. Also, as we do not resort to energy smearing,
can decompose an eigenstate in periodic orbit functions~the
scar functions!.

This paper is organized as follows. In Sec. II we form
late our approach to the calculation of a scar measure,
introduce the necessary objects. In Sec. III we compute s
for the Bunimovich stadium, and analyze how different fam
lies of periodic orbits scar the corresponding eigenfunctio
particularly the whispering gallery and bouncing ball fam
lies. Our conclusions and closing remarks can be found
Sec. IV.

II. SCAR FUNCTION ON THE BOUNDARY

All the information of a given eigenfunction of the bi
liard ~with Dirichlet boundary conditions! is contained in its
561063-651X/97/56~4!/3859~9!/$10.00
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normal derivative evaluated on the boundary. By means
the Green function we can obtain the wave functionCn(r ),
with wave numberkn , in the domain in terms of its norma
derivative:

Cn~r !52 R ds G0„kn ;r ,r 8~s!…
]Cn

]n
„r 8~s!…, ~1!

whereG0„kn ;r ,r 8(s)…5(2 i /4)H0
(1)

„knur2r 8(s)u… is the free
Green function@9#. H0

(1) is the Hankel function of the firs
kind.

We thus treat the normal derivative as the fundamen
irreducible object that will be tested for the presence of sc
The function

fn~s!5
]Cn

]n
„r 8~s!… ~2!

can be thought of as the coordinate representation of an
stract vectorufn& in the Hilbert space of periodic squar
integrable functions on the boundary. This boundary is a
the standard Poincare´ section for the classical dynamics an
reduces the motion to a canonical mapping in the Birkh
coordinates (q,p) @10#. The coordinateq is related to the arc
length coordinate at the boundary where the bounce ta
place byq5(s/ perimeter)mod1; and p5p¢• t̂/up¢u is the frac-
tion of tangential momentum at this point.

The Fourier transform of Eq.~2! would represent it in the
momentum representation, and a coherent state one w
display its features in the Birkhoff coordinate plane. We fo
low @7# to choose this route. Other representations are
course, possible, and have been used in this context. Sm
sky @6#, for example, used angle and angular moment
variables as phase-space coordinates, which is the na
description when employing scattering methods. Howev
on this basis the representation of diffraction effects on fu
tions on the boundary is singular and difficult to observ
The Birkhoff coordinates, besides embodying the natural
ometry of the billiard, avoid this problem by prescribin
definite periodic functions as candidates for boundary eig
functions.
3859 © 1997 The American Physical Society
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FIG. 1. Eigenfunction ~left panel! and
Husimi representation ~right panel! for
k5100.954 920 427 642. This function is scarre
by the periodic orbit with code 23202120. Th
crosses are the periodic points of this orbit.
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As shown in Ref.@11#, for eigenfunctions normalized to
unity in the domain, in a neighborhood of a givenk value,
we have the quasiorthogonality relation for the normal
rivatives,

1

2kn
2 R ds n̂•r fn* ~s!fm~s!5dmn1

~km2kn!

~km1kn!
O~1!. ~3!

Thus, with this measure, the set of eigenfunctions in a n
row range ofk is orthonormal, and span a linear space
dimensionO(k).

It is then convenient, as we want to work exclusively
the boundary, to adopt a definition of scalar product

^^fuc&&[
1

2k2 R ds n̂•r f* ~s!c~s!. ~4!

Any of these functions can be extended to the domain
means of Green’s theorem; using it as an ansatz for the
mal derivative,]C/]n(s), and settingC(s) to zero,
-

r-
f

y
r-

Ck~r !5 R dsFC„r 8~s!…
]G0

]n
„k;r ,r 8~s!…

2G0„k;r ,r 8~s!…
]C

]n
„r 8~s!…G . ~5!

Of course, Eq.~5! is not an eigensolution, because the lim
iting value ofC(r ), as r goes to the boundary, is not zero
that is to say, the function is discontinuous at the bounda
This function depends on the continuous parameterk, which
controls the semiclassical limit.

With this definition, the normal derivativesfn(s) of
eigenfunctions normalizedin the domainare orthonormal~to
order 1/k) in a small rangeDk5(23 perimeter/area!.

For the phase space representation we construct coh
states with the correct space periodicity@7#, defined as

^supq&5S k

sp D 1/4

(
a52`

`

exp@ ikp~s2q2a!#

3expS 2
k

2s
~s2q2a!2D . ~6!
ar
-

e
n

FIG. 2. Different representations of the sc
function of a periodic orbit. Upper left panel: pe
riodic orbit in the fundamental domain~symbolic
code 23202120, following@14#!. Upper right
panel: real part of the scar wave function in th
boundary. Lower left panel: probability density i
the domain ~via Green function!. Lower right
panel: Husimi representation.
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FIG. 3. Periodic orbits of four bounces in con
figuration space~upper panel! and in phase space
~lower panel!. In the latter plot, the points are
depicted by dots or crosses, depending on
sign of p. The dotted vertical line is placed at th
value of q where the discontinuity in curvature
occurs.
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This is a boundary wave packet, periodic ins, which is lo-
calized at the point (p,q) in the Birkhoff Poincare´ section
phase space.

A single wave packet represents a bounce off a spec
point on the boundary with a given tangential momentu
Thus, to extract the phase-space contents of a given ei
function, we can construct the overlap

An~p,q!5
1

u^^pqupq&&u1/2 R ds ^pqus&fn~s!
n̂–r¢

2kn
2 . ~7!

Thus a first visual display of the eventual localization a
scarring of the eigenstates comes through the Husimi fu
tion

Hn~p,q!5uAn~p,q!u2. ~8!

We show an example of this for the stadium eigenfunct
with k5100.954 920 427 642 in Fig. 1.

Clearly, a first quantitative measure of the scarring o
periodic orbit would be

S8~n,g!5
1

N (
i 51

N

Hn~pg i
,qg i

!, ~9!

which averages the probability over theN points g i of the
periodic trajectoryg. This measure was used by Muller an
Wintgen in the context of the diamagnetic Kepler proble
@8#.

This average over the probabilities of the periodic poi
does not take into account the phase relations, due to s
classical propagation, between them. Therefore, it seem
more convenient strategy to average theamplitudeswith the
proper phase differences. A better measure, then, is prov
by the construction of the scar function

^suw~k,g!&5
1

z^^w~k,g!uw~k,g!&& z1/2 (
j 51

N

exp~ i f j !^szpjqj&,

~10!
d
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whereqi andpi are the Birkhoff coordinates of the period
points.

The phasesf j are defined by

f j5kl j2 j p2
p

2
n j , ~11!

where l j is the distance in configuration space between
initial point of the periodic orbit and thej th point. The sec-
ond term takes into account the boundary conditions~Dirich-
let!, and the third the conjugate points along the trajecto
The inclusion of these phases is very important in the de
mination of the existence of scars.

The total accumulated phasef N will not, in general, be a
multiple of 2p. In order to have an invariant function, de
pending only on the orbit and not on the starting point,
add an additional phase to each point, so as to m
f N52pn, with n an integer:

f j→ f j1
j

N
a, ~12!

with a the minimum beetween (f N) mod 2p and
2p2( f N) mod 2p . This state is a coherent sum over a period
orbit and, thus, is a good candidate for an invariant pro
depending only on the orbit.

A. Scar intensity Sg„kn… and scar length spectrumS̃g„ l …

We define the scar intensity

S~n,g!5 z^^w~kn ,g!ufn&& z2. ~13!

Notice thatk is set tokn in ^w(k,g)u. This measure of the
scar intensity differs from Eq.~9! mainly by interference
terms.

Each wave packet in Eq.~10! represents a localized plan
wave hitting the boundary at a specified point in a specifi
direction. Thus Eq.~10!, when seen in this light, can b
assimilated to a superposition of plane waves which pr
leges the wave directions associated with the periodic or
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3862 56SIMONOTTI, VERGINI, AND SARACENO
For example, in Fig. 2 we show a periodic orbit of the s
dium billiard and the associated scar wave function in diff
ent representations, withk5100.954 920 427 642~the same
as in Fig. 1!.

The scar wave function in the domain is a solution of t
Helmholtz equation with a given value ofk. So, if we expand
it in terms of the exact eigenfunctions, we expect that
more significant contributions come from the eige
functions with closer kn to k @more precisely,
uk2knu<(23 perimeter/area)#. Then, using the quasior
thogonality relation~3!, the norm of the scar wave functio
in the domain is 1 to orderk21. Our aim is to describe this
subspace in terms of states constructed on periodic orbit
in Eq. ~13!. This is not dissimilar to the task of describin
them in terms of plane or cylindrical waves. However, t
peculiar linear combinations taken in Eq.~10!, being semi-
classically invariant under the bounce map, should prov
the most important correlations.

The density of states of the billiard has a semiclass
representation@12# as

FIG. 4. Odd-odd stadium eigenfunction wit
k5130.4886 755 073.

FIG. 5. S andS8 functions for k5130.488 675 507 3~upper and
lower panel, respectively.! In the leftmost inset we see the period
orbit with maximum scar intensity; in the rightmost one, the orb
that give the two secondary peaks. The orbits are ordered by
creasing number of bounces, up to nine.
-
-

e
-

as

e

l

dscl~k!'^d~k!&1
1

p(
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(
r 51

`
l p

u det~ I2Tp
r !u~1/2!

3cos@r ~klp2npp/2!#, ~14!

where the first sum is done over primitive periodic orbits, t
second sum takes into account their repetitions,l p is the

n-

FIG. 6. Distribution of scar intensities,N(S), for S ~full line!
and S8 ~dashed line! for k5130.488 675 507 3. The base of th
logarithm is 10.

FIG. 7. Distribution of scar intensities,N(S), for the 1654 con-
secutive eigenfunctions and first 617 periodic orbits. The base
the logarithm is 10.
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FIG. 8. Scar intensity and scar length spectrum for some whispering gallery periodic orbits. Upper left panel: scar intensity for
orbit 3332440. Lower left panel: scar length spectrum for periodic orbit 3332440. Upper right panel: scar intensity for period
55511111. Lower right panel: scar length spectrum for periodic orbit 55511111.
te
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length of the orbit,np is the Maslov index, andTp is the
monodromy matrix. The smooth part of the density of sta
is given by^d(k)&. The Fourier transform of Eq.~14! pro-
vides a distribution linked more directely to the classic
motion, i.e., thelength spectrum, which shows well-defined
peaks at the lengths~actions! of periodic orbits.

In order to focus more specifically on the scarring featu
of a single orbit along the spectrum, we setg to a given
periodic orbit in Eq.~13!,
s

l

s

Sg~kn!5 z^^wg~kn!ufn&& z2. ~15!

Its Fourier transform is

S̃g~ l !5(
kn

Sg~kn!exp~ iknl !, ~16!

which we will call the scar length spectrum.
FIG. 9. Scar intensity for a range ofk, for the
periodic orbit depicted in the inset.
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FIG. 10. Group of eigenfunctions in the same range ofk of Fig. 9.
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If periodic orbits obeyed Bohr-Sommerfeld-like quantiz
tion conditions, we would expect a periodic behavior
Sg(kn) with a periodDk5p/Lg . This implies periodic se-
quences of scarred states along the spectrum . These s
have been also observed in other billiards@5,6#. Here we test
for these periodicities directly in the scar length spectru
The periodicities would be exact but for the fact that t
periodic orbit basis is not orthonormal, and the quantizat
rule of a single orbit does not lead necessarily to a quant
state.

To eliminate spurious behavior of the Fourier transfo
due to end effects of thek interval, we multiply the scar
intensity in Eq.~16! by a function vanishing at the end
typically a quadratic function@13#. The scar length spectrum
still shows large fluctuations with very clear local avera
peaks at certain lengths. This local structure is evidenced
averaging the resulting Fourier transform.

III. BUNIMOVICH STADIUM

The boundary of the stadium billiard is defined by tw
semicircumferences connected by two straight segments

FIG. 11. Bouncing ball periodic orbits, first five members
families A, B, andC ~first, second, and third rows, repectively!.
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Of

all the possible stadia, we consider only the one with relat
2:1 beetween its total length and height, and we will sc
the lengths in such a way that the perimeter is 412p and the
area is 41p.

At the classical level, we will describe the periodic orb
following Biham and Kvale@14#. Their symbolic dynamics
is a six-symbol one where each symbol corresponds t
bounce off the boundary:~i! 0: A bounce off the lower
straight segment.~ii ! 1: A clockwise bounce off the left

FIG. 12. Scar intensity and scar length spectrum for a perio
orbit in the bouncing ball limit.
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56 3865QUANTITATIVE STUDY OF SCARS IN THE BOUNDARY . . .
semicircle or a single anticlockwise bounce off the left sem
circle. ~iii ! 2: A bounce off the upper straight segment.~iv! 3:
An anticlockwise bounce off the right semicircle or a sing
clockwise bounce off the left semicircle.~v! 4: A not single
anticlockwise bounce off the left semicircle.~vi! 5: A not
single clockwise bounce off the right semicircle. A bounce
a single one if it is not preceded or followed by a bounce
the same section of the boundary.

This dynamics has to be pruned. This pruning is geome
cal and corresponds to the symbolic dynamics of the stad
of infinite length. As the length is made finite, more pruni
rules appear~of a dynamical character!, as described in Ref
@15#.

Using this symbolic description we have computed all
periodic orbits up to ten bounces and a few selected one
much higher periods, and we have ordered them~somewhat
arbitrarily! by their number of bounces and symbolic cod
In Fig. 3 we show the correspondence of these calcula
orbits as projections in configuration space and in
Birkhoff Poincaré~desymmetrized! section.

At the quantum level, we compute the energy levels a
eigenfunctions by the scaling method@11#, which gives di-
rectly all eigenvalues and eigenfunctions very precisely
efficiently. We have computed 1654 consecutive levels
their eigenfunctions ranging fromk'62.8 andk'125.2; and
other selected ones.

A. Periodic orbit decomposition of eigenfunctions

In Fig. 5 we demostrate the advantage of using the pre
scar function as opposed to the simple unphased averageS8,

FIG. 13. Scar intensity and scar length spectrum for a perio
orbit not in the bouncing ball limit.
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of Eq. ~9!. We take one of the scarred wave functions
Heller @2# ~Fig. 4! and plot the quantitiesS and S8 as a
function of the periodic orbit labelg ~Fig. 5!. The periodic
orbits are ordered in increasing periods and, within each
riod, by symbolic codes. Recurrences inS sometimes occur
due to the existence of orbits of periodn3p that almost
retracen times the periodic orbit of periodp. However,
many recurrences are also due to short homoclinic and
eroclinic excursions.

The peaks are more clearly defined in theS plot, due to
the enhancement brought about by the semiclassical dyn
ics f j ~note that the maximum scar value is around 0.114
S and 0.06 forS8). Due to the binning of the interval, th
strongest peak ofS8 overlaps with one of the secondar
peaks ofS. In the leftmost inset in Fig. 5 we show the per
odic orbit that scars this eigenfunction the most. Moreov
the two most prominent secondary peaks come from
different homoclinic excursions of this orbit~see the right-
most inset in Fig. 5!.

Both measures indicate the presence of scars, i.e., am
tudes larger than the average fluctuation. However, asS cap-
tures the phase relations of periodic orbits, the ba
uw(k,g)& is ‘‘closer’’ to reflecting the invariant propertie
characteristic of the stadium. Thus we expect the amplitu
S to have much larger fluctuations~and, therefore, cleare
scars! thanS8. This fact is shown clearly in Fig. 6, where w
show the distribution of scar intensities,N(S). The small
amplitudes are distributed approximately as an exponen
The distribution corresponding toS is much broader than
that of S8. For this strongly scarred state, there is a lar
region beetween 0.07 and 0.114 where no scar intens
appear. So, log10„N(S)… goes to2` in this region. At 0.114
a single periodic orbit gives a large scar, yieldin
log10„N(S)…50. The occurrence of this peak is, however
rare event. The secondary peaks, due to homoclinic ex
sions of the periodic orbit which gives the strongest peak,
to be found at, approximately,S50.071 and 0.066.

We have tested all 1654 eigenfunctions in the ran
beetweenk'62.8 andk'125.2 against scarring by the firs
617 periodic orbits~i.e., up to nine bounces!, giving a total of
approximately 1 000 000 scar intensities. The distribution
these intensities is shown in Fig. 7. We can observe th
different sections: strong scars, weak scars, and the re
closer toS50, where most of the scar intensities are~there
are around 1 000 000 scar intensities fromS50 to 0.1,
whereas only 760 are to be found withS.0.1.! This distri-
bution is very different from the Porter-Thomas result. T
reason is that the basis of^suw(k,g)& is not orthonormal and,
moreover, is chosen so as to be closely related to the dyn
ics. Should we examine the scars on any other basis, u
lated to the dynamics of the stadium, for example a pla
wave basis, we would only expect a statistical distribution
the intensities, in accordance to random matrix theories.

The presence of the peaks in the strong scar region in
7 quantifies the scar phenomenon and shows, in accord
with Shnirelman’s theorem@16#, that scarring is exceptiona
However, it is the only remaining signature of the speci
classical behavior of the system, as embodied in its perio
orbits.

ic
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FIG. 14. Scar intensity and scar length spectrum for some low period periodic orbits. Left panels: scar intensity and scar length
for periodic orbit 3210. Right panels: scar intensity and scar length spectrum for periodic orbit 2321.
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B. Families of periodic orbits

1. Whispering gallery family

This family is composed by trajectories of cod
5n0a1m2b; where a and b are 0 or 1, andm and n are
positive integers~as there is time-reversal symmetry, th
same orbit can be described by the code 3n2b4m0a). The
whispering gallery limit is approached asm,n→` simulta-
neously. For the periodic orbit to exist, as this limit is a
proached, the difference betweenm and n should remain
finite; the largeness of this difference being determined
the length of the stadium. This is a clear example of dyna
cal pruning~as opposed to geometrical pruning, i.e. indep
dent of the length of the stadium!.

We have found that the whispering gallery trajector
that show a more pronounced periodicity in the scarring
those defined bym.2 andn.2, independent of their sym
metry or value ofa andb. Of course, where high symmetr
is present, the periodicity is stronger.

We show in Fig. 8 the functionSg(k) and the scar length
spectrum for some whispering gallery periodic orbits. W
see how the scar length spectrum shows clearly the per
icity of Sg(k), defined by the fundamental length of the orb
and its repetitions.~The lengths shown are multiples ofLg/2
because of the symmetry of the orbit.!

The width of the group of states that participate in t
scarring is constant in the region considered. This means
more and more states are involved in one ‘‘Boh
Sommerfeld’’ interval. However, only a few, typically one o
two, show visible scars. In Fig. 8~first panel!, where the
width of the groups is approximatelyDk'1.27, the first
y
i-
-

s
e

d-

at

group involves around 35 states atk'62.88 and the last
involves 45 atk'125.60 in accord with the change in th
density of states.

We can exemplify how well the scar intensity picks up t
scarred eigenstates. We look for scars in the region delim
by k'77.14 andk'77.34 for the periodic orbit with code
55551111~see Fig. 9!. We find two contiguous states that a
scarred by this periodic orbit, namely,k577.221 719 911 74
andk577.240 338 352 10. The probability densities of the
eigenfunctions confirm this fact: see Fig. 10. Notice the sim
larity between both eigenfunctions and between them and
mentioned whispering gallery periodic orbit.

2. Bouncing ball family

This family is composed of three subfamilies, followin
Ref. @17#, whose symbolic codes are 33(02)n11(02)n ~family
A), 23(20)n21(20)n ~family B), and 3(20)n1(02)n ~family
C). The bouncing ball limit isn→`, where the resulting
periodic orbit has increasingly smallerx component of the
wave numberk. We will consider the first five members o
each family, with periods ranging from 6 to 24~see Fig. 11!.

The bouncing ball eigenstates are approximately
scribed by those of a rectangle with the same size as the
inscribed in the stadium. So the quantized wave numbers
given byk'pAnx

21ny
2, wherenx(y) is the number of nodes

along thex(y) axis.
The preceding considerations tell us not to expect a s

length spectrum that is peaked in the length of the giv
periodic orbit and its multiples. This is so because there is
such periodicity in the scar intensities for the bouncing b
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56 3867QUANTITATIVE STUDY OF SCARS IN THE BOUNDARY . . .
families. This is what we observe for those orbits tending
the bouncing ball limit; see an example in Fig. 12. Notic
though, how for largeL the peaks appear for evenL. This
fact is related to the multiple bounces between the t
straight segments of the billiard, approximately of length
Some of the first few orbits of each family show a sing
peak in the length of the orbit, with no peaks~or small ones!
in the multiples; see an example in Fig. 13.

3. Other periodic orbits

As ‘‘scars are scarce’’@6#, the scar length spectrum fo
most periodic orbits shows no peaks in the associated len
Other orbits show rather more complex patterns with ma
lengths that are not easily assigned to other periodic or
~whether in the homoclinic family of the first or not!. How-
ever, there is a small set of orbits for which the scar inten
ties have the expected periodicity~some examples in Fig
14!.

IV. CONCLUSIONS

We have constructed a quantitative measure for the p
ence of scars that, by taking into account semiclassical ph
correlations, provides a sharper indication of their presen
The measure is constructed as an ansatz for the norma
rivative of a state representing a pure stationary scar
therefore testing the most the irreducible contents of
or
o
,

o
.

th.
y
ts

i-

s-
se
e.
e-
d

e

eigenfunctions as contained in the normal derivative. Thu
is very suitable for numerical calculations, as it involves on
boundary integrations, avoiding completely— except
graphical display— any integration over the domain of t
billiard.

We have provided examples of the decomposition o
single eigenstate into scar functions and of the system
way in which some orbits appear in thek spectrum. The sca
intensities show how an eigenstate is distributed on the b
of quantum states constructed from periodic orbits. Suc
basis is clearly not orthogonal~and, probably, overcom
plete!. The investigation of the properties of this basis r
mains to be done.

By testing many orbits and many eigenstates, we h
found that scars are quite rare, in accordance to expecta
from Shnirelman’s theorem@16#. Even less frequent is to
find sequences of states scarred periodically~in k) by a given
orbit. Most eigenfunctions decompose in periodic orbits
such a way that no one prevails over the others. This, in tu
implies no clear scars in most instances. The families t
show stronger scars are the whispering gallery and
bouncing ball ones, both being rather exceptional familie
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